
Manatee and the Annotation System Architecture

An In-depth Look Inside Manatee Development and the Annotation Process

Annotation Architecture Overview

• Manatee is only a small part of a network of annotation tools and
processes that make up the annotation architecture

• The Small Genome Control (SGC) is the command center for all
data management

• SGC controls results from searches from the annotation pipeline
and feeds them into the database

• Client scripts like Manatee and the CMR allow manipulation and
curation of this data

Omnium Annotation Database (gvc, gch)
MySQL
Clone

SGC

Glimmer BER
HMM

Annotation Pipeline

New or Modified Sequence
Data

…TAATAGCCG…

Local search file databases
are generated by SGC and
can be read in by Manatee
and other annotation client
applications

CMR Reads Data From Omnium

Inserted Into

Manatee Reads and Updates Data
From the Annotation Databases

Manatee Reads and Updates Data
From the Annotation Database
MySQL Clones

Data generated by SGC is inserted
into the annotation database. Also,
data that has been updated in the
annotation databases is recycled

back to SGC to rerun searches on
the modified sequences.

Dumped Into

An Annotation Database Overview

Annotation Database

• Manatee draws data from numerous microbial relational databases whose schemas
are identical

• Certain primary identifiers are used throughout the database to identify specific genes
and sequences

• See examples below:

feat_name: Primary identifier for a gene

asmbl_id: Primary identifier for a genomic sequence

Annotation Database

• Manatee runs queries that pull data from several tables each of which contain
specific groups of data.

• The entire schema can be found at: http://manatee.sourceforge.net/images/prok_annotation_schema.jpg

• Examples of important tables from the annotation database are below:

The ident table
contains data related
to gene identification.
You will find
information on the
locus, gene name,
gene symbols, EC #’s
and annotation
comments

The asm_feature
table contains data
related to gene
coordinates, mRNA,
and protein
sequences

The evidence table
contains all
coordinate based
“hit” data like
HMMs, BERs,
Interpro

The ORF_attribute table
contains gene attribute-
associated data like molecular
weight, isoelectric point,
lipoproteins, signalP, and
transmembrane proteins

feat_name

asmbl_id

feat_name

Other Required Databases

• EGAD and COMMON are two required supporting databases that
contain important information for annotation

• EGAD contains data related to HMM annotation and TIGR role
identification

• COMMON contains data for GO annotation and identification

EGAD Tables

• hmm2 contains HMM annotation data like names, cutoffs, and other scores

• roles contains TIGR role data like role names and sub-names

HMM accession

HMM name

Cutoff Scores

Role names

COMMON Tables

• go_term contains GO annotation like GO names, types, and their
definitions

• go_map maps GO annotation to other annotation data types and
databases like EC numbers and Interpro accessions

• go_link maintains the GO id hierarchy between “parent” GO ids and
the parent’s functionally related “child” GO ids

Databases the GO ids are mapped to

GO id names, types, and definitions

Parent and their functionally related child GO ids

• SELECT [fields name(s) in the table]

• FROM [the table name(s)]

• WHERE [constraints to pull out only the types of data you want]

• AND [additional constrains]

• Final Basic Structure:

SELECT “a field” FROM “a table” WHERE “the field data looks like
something” AND “the field data ALSO looks like something else”

Basic Query Structure
tablefields

Simple Query Examples

SELECT feat_name, locus, gene_sym, com_name
FROM ident
WHERE feat_name = “ORF04813”

Get the com_name, locus, and gene
symbol for a particular gene:

SELECT feat_name, role_id
FROM role_link
WHERE feat_name = “ORF04813”

Get the TIGR role ids for a particular gene:

feat_name locus gene_sym com_name

ORF04813 SO2740 bioB biotin synthase

feat_name role_id

ORF04813 77

SELECT feat_name, go_id
FROM go_role_link
WHERE feat_name = “ORF04813”

Get the GO ids for a particular gene:

feat_name go_id

ORF04813 GO:0004076

ORF04813 GO:0009102

Complex Query Examples

SELECT feat_name, role_id
FROM role_link
WHERE feat_name = “ORF04813”

Get the TIGR role ids for a particular gene:

feat_name role_id

ORF04813 77

Now get the role names as well

SELECT r.feat_name, r.role_id, e.mainrole, e.sub1role
FROM role_link r, egad..roles e
WHERE r.feat_name = “ORF04813”
AND r.role_id = e.role_id

feat_name role_id mainrole sub1role

ORF04813 77 Biosyntesis of cofactors, prosthetic groups, and carriers Biotin

SELECT feat_name, go_id
FROM go_role_link
WHERE feat_name = “ORF04813”

feat_name go_id

ORF04813 GO:0004076

ORF04813 GO:0009102

Now get the GO annotation as well

SELECT g.feat_name, g.go_id, t.type, t.name
FROM go_role_link g, common..go_term t
WHERE g.feat_name = “ORF04813”
AND g.go_id = t.go_id

feat_name go_id type name

ORF04813 GO:0004076 function biotin synthase activity

ORF04813 GO:0009102 process biotin biosynthesis

Get the GO ids for a particular gene:

Get all data for each HMM belonging to a particular gene
including all coordinates, cutoff scores, HMM
accessions/names, and other scores. Note that this query
makes use of tables in the egad and common databases.
These databases are required for Manatee to run properly:

SELECT e.id, e.accession, e.ev_type, s.score, t.score_type,
e.curated, e.end5, e.end3, e.rel_end5, e.rel_end3,
h.trusted_cutoff, h.noise_cutoff, e.assignby, e.date,
e.m_lend, e.m_rend, h.hmm_com_name, h.iso_type,
h.hmm_len, h.ec_num, h.gene_sym, h.trusted_cutoff2,
h.noise_cutoff2, h.gathering_cutoff, h.gathering_cutoff2
FROM evidence e, feat_score s, egad..hmm2 h, common..score_type t
WHERE e.feat_name = "ORF04813"
AND h.is_current = 1
AND e.id = s.input_id
AND t.input_type = "HMM2"
AND t.id = s.score_id
AND e.accession = h.hmm_acc

SELECT i.feat_name, i.locus, i.com_name, i.gene_sym,
i.ec#, a.asmbl_id, a.end5, a.end3
FROM ident i, role_link r, asm_feature a, stan s
WHERE r.role_id = 91
AND r.feat_name = a.feat_name
AND a.feat_name = i.feat_name
AND a.asmbl_id = s.asmbl_id
AND s.iscurrent = 1

“Really” Complex Query Examples

Get all genes and their respective annotation for a
particular role_id (not feat_name). In this example, we use
role_id 91 – Cell Envelope, Surface Structures:

SELECT e.end5, e.end3, e.rel_end5, e.rel_end3
FROM evidence e, asm_feature f, stan s
WHERE e.feat_name = "ORF04813"
AND e.ev_type = "HMM2“
AND e.feat_name = f.feat_name
AND f.asmbl_id = s.asmbl_id
AND s.iscurrent = 1

Get all HMM genomic coordinates and
relative gene coordinates for a particular
gene:

• These are very complex queries that use 3 or more tables to get information

The stan table is used to pull out the latest
genomic sequence identifier (the asmbl_id)

The feat_score table contains multiple scores
for certain types of hits like HMMs

The score_type table in the common database
contains a controlled vocabulary describing all the
scores found in the feat_score table

A Software Architecture Overview

Manatee Software Architecture

• The Manatee software is a Perl/CGI based application which is built
upon a 3-tier architecture

• Portable between several different database vendors (Sybase,
MySQL) and operating systems (Redhat/Fedora/Mandrake Linux,
Solaris)

• 3-tier, API-based structure allows the software to be expandable and
reusable by other future annotation related software products

• Project-specific customization possible through clever use of an
HTML templating system

HTML

HTML

To User Via Browser

Perl scripts

Relational Annotation Database

Client Layer

API
Middle Layer

Database Modules

Backend Layer

3-Tier Architecture Overview

• A software application is “3-Tier” if it contains 3 standard
layers each of which are independent from each other

• Each layer can be independently modified and new modules
can be introduced to make use of new databases or changes
in user requirements

• Client Layers are responsible for taking data and formatting it
in some sort of useful user interface

• Middle Layers house a standard API, a group of “functions”
that allow the Client Layer to communicate with the Backend
Layer

• Backend Layers contain the queries that the Middle Layer
requests and retrieve the data

HTML

HTML

To User Via Browser

Perl scripts

Relational Annotation Database

Client Layer

API
Middle Layer

Database Modules

Backend Layer

To User Via Browser

The Client Layer

• Made up of Perl CGI scripts

• HTML Templating System allows for project-
specific user interfaces

• Communicates with the Middle Layer to retrieve
data from a specified database and vendor

• Output sent to web browser for viewing

The Middle Layer (API)

HTMLPerl scripts

Client Layer

• Interface for clients to the Backend Layer

• Light-weight API is independent of user
interfaces and databases

• Simple, static, and contains a controlled
vocabulary

• Extensible API’s allow for more than one type
of project to use a shared API

• For example, the CMR and Manatee can share
the API which will in turn call a different set of
queries from the Backend layer

Project
API

Middle Layer

Shared API

Project
API

Database Modules

Backend Layer

Relational Annotation Database

HTMLPerl scripts

Client Layer

The Backend Layer (Database)

API
Middle Layer

Prok Module Euk Module Omnium Module

Sybase MySQL

Backend / Database Layer

• SQL resides in this layer

• Multiple schema support (prok, euk, and
omnium schemas)

• Multiple database vendor support
(Sybase, MySQL, Postgres)

• Flexibility to use future schemas and
vendors in the future (Chado, Oracle?)

Open Source Initiative

• Manatee and the Annotation Engine project are part of our Open
Source Initiative

• Goal is to provide high quality software and services to the genomic
community

• External involvement in development and feedback is strongly
encouraged

• Creation of centralized portals that provide a knowledge base and
allow for access and support for these software services

• Manatee’s Portal: http://manatee.sourceforge.net

• Community feedback drives development!

Manatee Example Review

• Manatee is an example of all that we’ve discussed so far

• Works off of our annotation databases

• Software is built on the 3-tier architecture
• Web based user interface representing the client
• Client “asks” to the API middle layer for certain information
• API in turn asks the database layer to “go get it”

• Open source project with emphasis on community
feedback and contributions to development

Manatee External Overview

• Installed on a Linux or Solaris machine at your location

• Other required packages will be needed: MySQL, Apache, Perl
modules, and required databases

• Annotation Engine -> MySQL dump of annotation database ->
Placed in private FTP area -> Downloaded by you!

• See the installation instructions for all the details on how to do this:
http://manatee.sourceforge.net/installation.shtml

• I will give an overview of Manatee’s website after the presentation

Future Software and Services

• An automated flat file refreshing service

• Automatic database updates (common database, xml files, etc)

• Sybil – Comparative Genomics Software
• Will allow data mining of a database containing comparative genomics data
• Software will be available to the external community much like Manatee is

currently

• Chado – Generic Model Organism Database
• Chado is an open source modular schema that we are currently testing
• Development is underway to migrate the annotation databases into this new

schema (will take a while, though) ☺

Funding of Future Developments

• Pathema: A Bioinformatics Resource Center funded by the NIAID

• In depth curatorial analysis of six bacterial pathogens will be available:

Category A priority pathogens: Category B priority pathogens:

Bacillus anthracis Burkholderia mallei

Clostridium botulinum Burkholderia pseudomallei

Francisella tularensis Clostridium perfringens

• Pathema will also contain data on the genomes, genes and many functions
related to pathogenicity on the complete set of NIAID category A-C bacterial
pathogens

• Many of our tools will be used to drive this project

• In turn, helping us provide more services to you

• For More Info: http://www.tigr.org/pathema/

Acknowledgements

• Development:
• Todd Creasy – Lead Developer and Support Guru for you
• Sam Angiuoli, Anup Mahurkar, Victor Felix, Tanja Davidsen, Jeremy Peterson
• Owen White - The Boss

• Slave Drivers (i.e. The Annotators):
• Michelle Gwinn – Critical liaison for Manatee development
• Ramana Madupu – Wonderful tester and catcher of my numerous bugs
• The Whole Microbial Annotation Team – Without them, Manatee wouldn’t exist!

